歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
Linux教程網 >> Linux基礎 >> Linux教程 >> ext3 mount過程分析

ext3 mount過程分析

日期:2017/2/27 16:02:55   编辑:Linux教程
Ext3 mount原理
本質上,Ext3 mount的過程實際上是Linux/1672.html' target='_blank'>inode被替代的過程。例如,/dev/sdb塊設備被mount到/mnt/alan目錄。那麼mount這個過程所需要解決的問題就是將/mnt/alan的dentry目錄項所指向的inode屏蔽掉,然後重新定位到/dev/sdb所表示的inode索引節點。在沒有分析閱讀linux vfs mount代碼的時候,我的想法是修改dentry所指向的inode索引節點,以此實現mount文件系統的訪問。經過分析,在實際的vfs mount實現過程中,還是和我原始的想法略有差別,但是,基本目標還是相同的。

Linux VFS的mount過程基本原理如下圖所示:
當用戶輸入”mount /dev/sdb /mnt/alan”命令後,Linux會解析/mnt/alan字符串,並且從Dentry Hash表中獲取相關的dentry目錄項,然後將該目錄項標識成DCACHE_MOUNTED。一旦該dentry被標識成DCACHE_MOUNTED,也就意味著在訪問路徑上對其進行了屏蔽。

在mount /dev/sdb設備上的ext3文件系統時,內核會創建一個該文件系統的superblock對象,並且從/dev/sdb設備上讀取所有的superblock信息,初始化該內存對象。Linux內核維護了一個全局superblock對象鏈表。s_root是superblock對象所維護的dentry目錄項,該目錄項是該文件系統的根目錄。即新mount的文件系統內容都需要通過該根目錄進行訪問。在mount的過程中,VFS會創建一個非常重要的vfsmount對象,該對象維護了文件系統mount的所有信息。Vfsmount對象通過HASH表進行維護,通過path地址計算HASH值,在這裡vfsmount的HASH值通過“/mnt/alan”路徑字符串進行計算得到。Vfsmount中的mnt_root指向superblock對象的s_root根目錄項。因此,通過/mnt/alan地址可以檢索VFSMOUNT Hash Table得到被mount的vfsmount對象,進而得到mnt_root根目錄項。

例如,/dev/sdb被mount之後,用戶想要訪問該設備上的一個文件ab.c,假設該文件的地址為:/mnt/alan/ab.c。在打開該文件的時候,首先需要進行path解析。在解析到/mnt/alan的時候,得到/mnt/alan的dentry目錄項,並且發現該目錄項已經被標識為DCACHE_MOUNTED。之後,會采用/mnt/alan計算HASH值去檢索VFSMOUNT Hash Table,得到對應的vfsmount對象,然後采用vfsmount指向的mnt_root目錄項替代/mnt/alan原來的dentry,從而實現了dentry和inode的重定向。在新的dentry的基礎上,解析程序繼續執行,最終得到表示ab.c文件的inode對象。

關鍵數據結構說明
Linux VFS mount所涉及的關鍵數據結構分析如下。

Vfsmount數據結構
Vfsmount數據結構是vfs mount最為重要的數據結構,其維護了一個mount點的所有信息。該數據結構描述如下:
struct vfsmount {  
    struct list_head mnt_hash;  /* 連接到VFSMOUNT Hash Table */  
    struct vfsmount *mnt_parent;    /* 指向mount樹中的父節點 */  
    struct dentry *mnt_mountpoint;  /* 指向mount點的目錄項 */  
    struct dentry *mnt_root;    /* 被mount的文件系統根目錄項 */  
    struct super_block *mnt_sb; /* 指向被mount的文件系統superblock */  
#ifdef CONFIG_SMP  
    struct mnt_pcp __percpu *mnt_pcp;  
    atomic_t mnt_longterm;      /* how many of the refs are longterm */  
#else  
    int mnt_count;  
    int mnt_writers;  
#endif  
    struct list_head mnt_mounts;    /* 下級(child)vfsmount對象鏈表 */  
    struct list_head mnt_child; /* 鏈入上級vfsmount對象的鏈表點 */  
    int mnt_flags;  
    /* 4 bytes hole on 64bits arches without fsnotify */  
#ifdef CONFIG_FSNOTIFY  
    __u32 mnt_fsnotify_mask;  
    struct hlist_head mnt_fsnotify_marks;  
#endif  
    const char *mnt_devname;    /* 文件系統所在的設備名字,例如/dev/sdb */  
    struct list_head mnt_list;  
    struct list_head mnt_expire;    /* link in fs-specific expiry list */  
    struct list_head mnt_share; /* circular list of shared mounts */  
    struct list_head mnt_slave_list;/* list of slave mounts */  
    struct list_head mnt_slave; /* slave list entry */  
    struct vfsmount *mnt_master;    /* slave is on master->mnt_slave_list */  
    struct mnt_namespace *mnt_ns;   /* containing namespace */  
    int mnt_id;         /* mount identifier */  
    int mnt_group_id;       /* peer group identifier */  
    int mnt_expiry_mark;        /* true if marked for expiry */  
    int mnt_pinned;  
    int mnt_ghosts;  
};

在Linux內核中不僅存在VFSMOUNT的Hash Table,而且還維護了一棵Mount對象樹,通過該mount樹,我們可以了解到各個文件系統之間的關系。該mount樹描述如下:



上圖所示為三層mount文件系統樹。第一層為系統根目錄“/”;第二層有兩個mount點,一個為/mnt/a,另一個是/mnt/b;第三層在/mnt/a的基礎上又創建了兩個mount點,分別為/mnt/a/c和/mnt/a/d。通過mount樹,可以對整個系統的mount結構一目了然。

Superblock數據結構
每個文件系統都會擁有一個superblock對象對其基本信息進行描述。對於像ext3之類的文件系統而言,在磁盤上會持久化存儲一份superblock元數據信息,內存的superblock對象由磁盤上的信息初始化。對於像block device 之類的“偽文件系統”而言,在mount的時候也會創建superblock對象,只不過很多信息都是臨時生成的,沒有持久化信息。Vfs superblock數據結構定義如下:
struct super_block {  
    struct list_head    s_list;     /* 鏈入全局鏈表的對象*/  
    dev_t           s_dev;      /* search index; _not_ kdev_t */  
    unsigned char       s_dirt;  
    unsigned char       s_blocksize_bits;  
    unsigned long       s_blocksize;  
    loff_t          s_maxbytes; /* Max file size */  
    struct file_system_type *s_type;  
    const struct super_operations   *s_op;      /* superblock操作函數集 */  
    const struct dquot_operations   *dq_op;  
    const struct quotactl_ops   *s_qcop;  
    const struct export_operations *s_export_op;  
    unsigned long       s_flags;  
    unsigned long       s_magic;  
    struct dentry       *s_root;    /* 文件系統根目錄項 */  
    struct rw_semaphore s_umount;  
    struct mutex        s_lock;  
    int         s_count;  
    atomic_t        s_active;  
#ifdef CONFIG_SECURITY  
    void                    *s_security;  
#endif  
    const struct xattr_handler **s_xattr;  
 
    struct list_head    s_inodes;   /* all inodes */  
    struct hlist_bl_head    s_anon;     /* anonymous dentries for (nfs) exporting */  
#ifdef CONFIG_SMP  
    struct list_head __percpu *s_files;  
#else  
    struct list_head    s_files;  
#endif  
    /* s_dentry_lru, s_nr_dentry_unused protected by dcache.c lru locks */  
    struct list_head    s_dentry_lru;   /* unused dentry lru */  
    int         s_nr_dentry_unused; /* # of dentry on lru */  
 
    /* s_inode_lru_lock protects s_inode_lru and s_nr_inodes_unused */  
    spinlock_t      s_inode_lru_lock ____cacheline_aligned_in_smp;  
    struct list_head    s_inode_lru;        /* unused inode lru */  
    int         s_nr_inodes_unused; /* # of inodes on lru */  
 
    struct block_device *s_bdev;  
    struct backing_dev_info *s_bdi;  
    struct mtd_info     *s_mtd;  
    struct list_head    s_instances;  
    struct quota_info   s_dquot;    /* Diskquota specific options */  
 
    int         s_frozen;  
    wait_queue_head_t   s_wait_unfrozen;  
 
    char s_id[32];              /* Informational name */  
    u8 s_uuid[16];              /* UUID */  
 
    void            *s_fs_info; /* Filesystem private info */  
    fmode_t         s_mode;  
 
    /* Granularity of c/m/atime in ns.  
       Cannot be worse than a second */  
    u32        s_time_gran;  
 
    /*  
     * The next field is for VFS *only*. No filesystems have any business  
     * even looking at it. You had been warned.  
     */  
    struct mutex s_vfs_rename_mutex;    /* Kludge */  
 
    /*  
     * Filesystem subtype.  If non-empty the filesystem type field  
     * in /proc/mounts will be "type.subtype"  
     */  
    char *s_subtype;  
 
    /*  
     * Saved mount options for lazy filesystems using  
     * generic_show_options()  
     */  
    char __rcu *s_options;  
    const struct dentry_operations *s_d_op; /* default d_op for dentries */  
 
    /*  
     * Saved pool identifier for cleancache (-1 means none)  
     */  
    int cleancache_poolid;  
 
    struct shrinker s_shrink;   /* per-sb shrinker handle */  
};

代碼流程分析
Linux中實現mount操作需要一定的代碼量,下面對Linux VFS Mount代碼進行分析說明,整個分析過程按照mount操作函數調用流程進行。代碼分析基於Linux-3.2版本。

當用戶在用戶層執行mount命令時,會執行系統調用從用戶態陷入linux內核,執行如下函數(namespace.c):
SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,  
        char __user *, type, unsigned long, flags, void __user *, data)  
{  
    int ret;  
    char *kernel_type;  
    char *kernel_dir;  
    char *kernel_dev;  
    unsigned long data_page;  
    /* 獲取mount類型 */  
    ret = copy_mount_string(type, &kernel_type);  
    if (ret < 0)  
        goto out_type;  
    /* 獲取mount點目錄字符串 */  
    kernel_dir = getname(dir_name);  
    if (IS_ERR(kernel_dir)) {  
        ret = PTR_ERR(kernel_dir);  
        goto out_dir;  
    }  
    /* 獲取設備名稱字符串 */  
    ret = copy_mount_string(dev_name, &kernel_dev);  
    if (ret < 0)  
        goto out_dev;  
    /* 獲取其它選項 */  
    ret = copy_mount_options(data, &data_page);  
    if (ret < 0)  
        goto out_data;  
    /* 主要函數,執行掛載文件系統的具體操作 */  
    ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,  
        (void *) data_page);  
 
    free_page(data_page);  
out_data:  
    kfree(kernel_dev);  
out_dev:  
    putname(kernel_dir);  
out_dir:  
    kfree(kernel_type);  
out_type:  
    return ret;  
}

do_mount()函數是mount操作過程中的核心函數,在該函數中,通過mount的目錄字符串找到對應的dentry目錄項,然後通過do_new_mount()函數完成具體的mount操作。do_mount()函數分析如下:
long do_mount(char *dev_name, char *dir_name, char *type_page,  
          unsigned long flags, void *data_page)  
{  
    struct path path;  
    int retval = 0;  
    int mnt_flags = 0;  
 
。。。  
 
    /* 通過mount目錄字符串獲取path,path結構中包含有mount目錄的dentry目錄對象 */  
    retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);  
    if (retval)  
        return retval;  
 
    。。。  
 
    /* Separate the per-mountpoint flags */  
    if (flags & MS_NOSUID)  
        mnt_flags |= MNT_NOSUID;  
    if (flags & MS_NODEV)  
        mnt_flags |= MNT_NODEV;  
    if (flags & MS_NOEXEC)  
        mnt_flags |= MNT_NOEXEC;  
    if (flags & MS_NOATIME)  
        mnt_flags |= MNT_NOATIME;  
    if (flags & MS_NODIRATIME)  
        mnt_flags |= MNT_NODIRATIME;  
    if (flags & MS_STRICTATIME)  
        mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);  
    if (flags & MS_RDONLY)  
        mnt_flags |= MNT_READONLY;  
 
    flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |  
           MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |  
           MS_STRICTATIME);  
 
    /* remount操作 */  
    if (flags & MS_REMOUNT)  
        retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,  
                    data_page);  
    else if (flags & MS_BIND)  
        retval = do_loopback(&path, dev_name, flags & MS_REC);  
    else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))  
        retval = do_change_type(&path, flags);  
    else if (flags & MS_MOVE)  
        retval = do_move_mount(&path, dev_name);  
    else  
        /* 正常的mount操作,完成具體的mount操作 */  
        retval = do_new_mount(&path, type_page, flags, mnt_flags,  
                      dev_name, data_page);  
dput_out:  
    path_put(&path);  
    return retval;  
}

do_new_mount()函數主要分成兩大部分:第一部分建立vfsmount對象和superblock對象,必要時從設備上獲取文件系統元數據;第二部分將vfsmount對象加入到mount樹和Hash Table中,並且將原來的dentry對象無效掉。do_new_mount函數說明如下:
static int do_new_mount(struct path *path, char *type, int flags,  
            int mnt_flags, char *name, void *data)  
{  
    struct vfsmount *mnt;  
    int err;  
 
    。。。  
 
    /* 在內核建立vfsmount對象和superblock對象 */  
    mnt = do_kern_mount(type, flags, name, data);  
    if (IS_ERR(mnt))  
        return PTR_ERR(mnt);  
    /* 將vfsmount對象加入系統,屏蔽原有dentry對象 */  
    err = do_add_mount(mnt, path, mnt_flags);  
    if (err)  
        mntput(mnt);  
    return err;  
}

do_new_mount()中的第一步調用do_kern_mount()函數,該函數的主干調用路徑如下:
do_kern_mount--> vfs_kern_mount--> mount_fs
在mount_fs()函數中會調用特定文件系統的mount方法,如果mount是ext3文件系統,那麼在mount_fs函數中最終會調用ext3的mount方法。Ext3的mount方法定義在super.c文件中:
static struct file_system_type ext3_fs_type = {  
    .owner      = THIS_MODULE,  
    .name       = "ext3",  
    .mount      = ext3_mount,       /* ext3文件系統mount方法 */  
    .kill_sb    = kill_block_super,  
    .fs_flags   = FS_REQUIRES_DEV,  
};

ext3 mount函數主干調用路徑為:ext3_mount--> mount_bdev。Mount_bdev()函數主要完成superblock對象的內存初始化,並且加入到全局superblock鏈表中。該函數說明如下:
struct dentry *mount_bdev(struct file_system_type *fs_type,  
    int flags, const char *dev_name, void *data,  
    int (*fill_super)(struct super_block *, void *, int))  
{  
    struct block_device *bdev;  
    struct super_block *s;  
    fmode_t mode = FMODE_READ | FMODE_EXCL;  
    int error = 0;  
 
    if (!(flags & MS_RDONLY))  
        mode |= FMODE_WRITE;  
    /* 通過設備名字獲取被mount設備的bdev對象 */  
    bdev = blkdev_get_by_path(dev_name, mode, fs_type);  
    if (IS_ERR(bdev))  
        return ERR_CAST(bdev);  
 
    /*  
     * once the super is inserted into the list by sget, s_umount  
     * will protect the lockfs code from trying to start a snapshot  
     * while we are mounting  
     */  
    mutex_lock(&bdev->bd_fsfreeze_mutex);  
    if (bdev->bd_fsfreeze_count > 0) {  
        mutex_unlock(&bdev->bd_fsfreeze_mutex);  
        error = -EBUSY;  
        goto error_bdev;  
    }  
    /* 查找或者創建superblock對象 */  
    s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);  
    mutex_unlock(&bdev->bd_fsfreeze_mutex);  
    if (IS_ERR(s))  
        goto error_s;  
 
    if (s->s_root) {  
        /* 被mount文件系統的根目錄項已經存在 */  
        if ((flags ^ s->s_flags) & MS_RDONLY) {  
            deactivate_locked_super(s);  
            error = -EBUSY;  
            goto error_bdev;  
        }  
 
        /*  
         * s_umount nests inside bd_mutex during  
         * __invalidate_device().  blkdev_put() acquires  
         * bd_mutex and can't be called under s_umount.  Drop  
         * s_umount temporarily.  This is safe as we're  
         * holding an active reference.  
         */  
        up_write(&s->s_umount);  
        blkdev_put(bdev, mode);  
        down_write(&s->s_umount);  
    } else {  
        /* 文件系統根目錄項不存在,通過filler_super函數讀取磁盤上的superblock元數據信息,並且初始化superblock內存結構 */  
        char b[BDEVNAME_SIZE];  
 
        s->s_flags = flags | MS_NOSEC;  
        s->s_mode = mode;  
        strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));  
        sb_set_blocksize(s, block_size(bdev));  
        /* 對於ext3文件系統,調用ext3_fill_super函數 */  
        error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);  
        if (error) {  
            deactivate_locked_super(s);  
            goto error;  
        }  
 
        s->s_flags |= MS_ACTIVE;  
        bdev->bd_super = s;  
    }  
    /* 正常返回被mount文件系統根目錄項 */  
    return dget(s->s_root);  
 
error_s:  
    error = PTR_ERR(s);  
error_bdev:  
    blkdev_put(bdev, mode);  
error:  
    return ERR_PTR(error);  
}

do_new_mount()函數的第二步是將創建的vfsmount對象加入到mount樹和VFSMOUNT Hash Table中,並且將老的dentry目錄項無效掉。該過程主干函數調用過程如下所示:
do_new_mount--> do_add_mount--> graft_tree--> attach_recursive_mnt
attach_recursive_mnt()函數完成第二步過程的主要操作。至此,文件系統的mount操作已經完成。Mount完成之後,如果用戶想要訪問新mount文件系統中的文件,那麼需要在path解析過程中重定位dentry,該過程主要在follow_managed()函數中完成。在該函數中會判斷一個dentry是否已經被標識成DCACHE_MOUNTED,如果該標志位已經被設置,那麼通過VFSMOUNT Hash Table可以重定位dentry。
Copyright © Linux教程網 All Rights Reserved