歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
Linux教程網 >> Linux綜合 >> Linux內核 >> linux內核鏈表詳解

linux內核鏈表詳解

日期:2017/3/3 14:06:02   编辑:Linux內核

linux內核鏈表詳解

1、linux內核鏈表

(1)前述鏈表數據區域的局限性之前定義數據區域時直接int data;我們認為我們的鏈表中需要存儲的是一個int類型的數。但是實際上現實編程中鏈接中的節點不可能這麼簡單,而是多種多樣的。一般實際項目中的鏈表,節點中存儲的數據其實是一個結構體,這個結構體中包含若干的成員,這些成員加起來構成了我們的節點數據區域。

(2)一般性解決思路:數據區封裝為一個結構體因為鏈表實際解決的問題是多種多樣的,所以內部數據區域的結構體構成也是多種多樣的。這樣也導致了不同程序當中的鏈表總體構成是多種多樣的。導致的問題是:我們無法通過一個泛性的、普遍適用的操作函數來訪問所有的鏈表。這就意味著我們設計一個鏈表就得寫一套鏈表的操作函數(節點創建、插入、刪除、遍歷······)實際上深層次分析會發現:不同的鏈表雖然這些方法不能通用需要單獨寫,但是實際上內部的思路和方法是相同的,只是函數的局部地區有不同。(實際上鏈表操作是相同的,而涉及到數據區域的操作就有不同)鑒於以上2點:我們的理念就是,能不能有一種辦法把所有鏈表中操作方法裡共同的部分提取出來用一套標准方法實現,然後把不同的部分留著讓具體鏈表的實現者自己去處理。

2、內核鏈表的設計思路

(1)內核鏈表中自己實現了一個純鏈表(純鏈表就是沒有數據區域,只有前後向指針)的封裝,以及純鏈表的各種操作函數(節點創建、插入、刪除、遍歷······)。這個純鏈表本身自己沒有任何用處,它的用法是給我們具體鏈表作為核心來調用。

3、list.h文件簡介

(1)內核中核心純鏈表的實現在liunx內核的include/linux/list.h文件中

(2)list.h中就是一個純鏈表的完整封裝,包含節點定義和各種鏈表操作方法。

4、內核鏈表的基本算法和使用簡介

(1)內核鏈表的節點創建、刪除、遍歷等

(2)內核鏈表的使用實踐

問題:內核鏈表只有純鏈表,沒有數據區域,怎麼使用?

設計的使用方法是將內核鏈表作為將來整個數據結構的結構體的一個成員內嵌進去。

舉例分析:

#include <linux/list.h>

struct driver_info

{

int data;

};

// driver結構體用來管理內核中的驅動

struct driver

{

char name[20];

// 驅動名稱

int id;

// 驅動id編號

struct driver_info info;

// 驅動信息

struct list_head head;

// 內嵌的內核鏈表成員

};

struct driver2

{

char name[20];

// 驅動名稱

int id;

// 驅動id編號

struct driver_info info;

// 驅動信息

//struct list_head head;

// 內嵌的內核鏈表成員

struct driver *prev;

struct driver *next;

};

// 分析driver結構體,可知:前三個成員都是數據區域成員(就是我們之前簡化為int data的東西),第4個成員是一個struct list_head類型的變量,這就是一個純鏈表。

// 本來driver結構體是沒有鏈表的,也無法用鏈表來管理。但是我們driver內嵌的head成員本身就是一個純鏈表,所以driver通過head成員給自己擴展了鏈表的功能。

// driver通過內嵌的方式擴展鏈表成員,本身不只是有了一個鏈表成員,關鍵是可以通過利用list_head本身事先實現的鏈表的各種操作方法來操作head。

// 最終效果:我們可以通過遍歷head來實現driver的遍歷;遍歷head的函數在list.h中已經事先寫好了,所以我們內核中去遍歷driver時就不用重復去寫了。

// 通過操作head來操作driver,實質上就是通過操作結構體的某個成員變量來操作整個結構體變量。這裡面要借助container_of宏

代碼分析如下:

#ifndef _LINUX_LIST_H

#define _LINUX_LIST_H

#include <linux/stddef.h>

#include <linux/poison.h>

#include <linux/prefetch.h>

#include <asm/system.h>

/*

* Simple doubly linked list implementation.

*

* Some of the internal functions ("__xxx") are useful when

* manipulating whole lists rather than single entries, as

* sometimes we already know the next/prev entries and we can

* generate better code by using them directly rather than

* using the generic single-entry routines.

*/

//鏈表模板,只有指針沒有數據,需要的時候自己添加

struct list_head {

struct list_head *next, *prev;

};

//兩個宏,定義時初始化,指向自己

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \

struct list_head name = LIST_HEAD_INIT(name)

//函數初始化,定義完在初始化

//和上面的宏一起使用更加方便

static inline void INIT_LIST_HEAD(struct list_head *list)

{

list->next = list;

list->prev = list;

}

/*

* Insert a new entry between two known consecutive entries.

*

* This is only for internal list manipulation where we know

* the prev/next entries already!

*/

#ifndef CONFIG_DEBUG_LIST

//中間節點添加,通過宏定義選擇用哪一個

static inline void __list_add(struct list_head *new,

struct list_head *prev,

struct list_head *next)

{

next->prev = new;

new->next = next;

new->prev = prev;

prev->next = new;

}

#else

extern void __list_add(struct list_head *new,

struct list_head *prev,

struct list_head *next);

#endif

/**

* list_add - add a new entry

* @new: new entry to be added

* @head: list head to add it after

*

* Insert a new entry after the specified head.

* This is good for implementing stacks.

*/

//頭節點添加

static inline void list_add(struct list_head *new, struct list_head *head)

{

__list_add(new, head, head->next);

}

/**

* list_add_tail - add a new entry

* @new: new entry to be added

* @head: list head to add it before

*

* Insert a new entry before the specified head.

* This is useful for implementing queues.

*/

//尾節點添加

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

__list_add(new, head->prev, head);

}

/*

* Delete a list entry by making the prev/next entries

* point to each other.

*

* This is only for internal list manipulation where we know

* the prev/next entries already!

*/

static inline void __list_del(struct list_head * prev, struct list_head * next)

{

next->prev = prev;

prev->next = next;

}

/**

* list_del - deletes entry from list.

* @entry: the element to delete from the list.

* Note: list_empty() on entry does not return true after this, the entry is

* in an undefined state.

*/

#ifndef CONFIG_DEBUG_LIST

static inline void list_del(struct list_head *entry)

{

__list_del(entry->prev, entry->next);

entry->next = LIST_POISON1;

entry->prev = LIST_POISON2;

}

#else

extern void list_del(struct list_head *entry);

#endif

/**

* list_replace - replace old entry by new one

* @old : the element to be replaced

* @new : the new element to insert

*

* If @old was empty, it will be overwritten.

*/

static inline void list_replace(struct list_head *old,

struct list_head *new)

{

new->next = old->next;

new->next->prev = new;

new->prev = old->prev;

new->prev->next = new;

}

static inline void list_replace_init(struct list_head *old,

struct list_head *new)

{

list_replace(old, new);

INIT_LIST_HEAD(old);

}

/**

* list_del_init - deletes entry from list and reinitialize it.

* @entry: the element to delete from the list.

*/

static inline void list_del_init(struct list_head *entry)

{

__list_del(entry->prev, entry->next);

INIT_LIST_HEAD(entry);

}

/**

* list_move - delete from one list and add as another's head

* @list: the entry to move

* @head: the head that will precede our entry

*/

static inline void list_move(struct list_head *list, struct list_head *head)

{

__list_del(list->prev, list->next);

list_add(list, head);

}

/**

* list_move_tail - delete from one list and add as another's tail

* @list: the entry to move

* @head: the head that will follow our entry

*/

static inline void list_move_tail(struct list_head *list,

struct list_head *head)

{

__list_del(list->prev, list->next);

list_add_tail(list, head);

}

/**

* list_is_last - tests whether @list is the last entry in list @head

* @list: the entry to test

* @head: the head of the list

*/

static inline int list_is_last(const struct list_head *list,

const struct list_head *head)

{

return list->next == head;

}

/**

* list_empty - tests whether a list is empty

* @head: the list to test.

*/

static inline int list_empty(const struct list_head *head)

{

return head->next == head;

}

/**

* list_empty_careful - tests whether a list is empty and not being modified

* @head: the list to test

*

* Description:

* tests whether a list is empty _and_ checks that no other CPU might be

* in the process of modifying either member (next or prev)

*

* NOTE: using list_empty_careful() without synchronization

* can only be safe if the only activity that can happen

* to the list entry is list_del_init(). Eg. it cannot be used

* if another CPU could re-list_add() it.

*/

static inline int list_empty_careful(const struct list_head *head)

{

struct list_head *next = head->next;

return (next == head) && (next == head->prev);

}

/**

* list_rotate_left - rotate the list to the left

* @head: the head of the list

*/

static inline void list_rotate_left(struct list_head *head)

{

struct list_head *first;

if (!list_empty(head)) {

first = head->next;

list_move_tail(first, head);

}

}

/**

* list_is_singular - tests whether a list has just one entry.

* @head: the list to test.

*/

static inline int list_is_singular(const struct list_head *head)

{

return !list_empty(head) && (head->next == head->prev);

}

static inline void __list_cut_position(struct list_head *list,

struct list_head *head, struct list_head *entry)

{

struct list_head *new_first = entry->next;

list->next = head->next;

list->next->prev = list;

list->prev = entry;

entry->next = list;

head->next = new_first;

new_first->prev = head;

}

/**

* list_cut_position - cut a list into two

* @list: a new list to add all removed entries

* @head: a list with entries

* @entry: an entry within head, could be the head itself

* and if so we won't cut the list

*

* This helper moves the initial part of @head, up to and

* including @entry, from @head to @list. You should

* pass on @entry an element you know is on @head. @list

* should be an empty list or a list you do not care about

* losing its data.

*

*/

static inline void list_cut_position(struct list_head *list,

struct list_head *head, struct list_head *entry)

{

if (list_empty(head))

return;

if (list_is_singular(head) &&

(head->next != entry && head != entry))

return;

if (entry == head)

INIT_LIST_HEAD(list);

else

__list_cut_position(list, head, entry);

}

static inline void __list_splice(const struct list_head *list,

struct list_head *prev,

struct list_head *next)

{

struct list_head *first = list->next;

struct list_head *last = list->prev;

first->prev = prev;

prev->next = first;

last->next = next;

next->prev = last;

}

/**

* list_splice - join two lists, this is designed for stacks

* @list: the new list to add.

* @head: the place to add it in the first list.

*/

static inline void list_splice(const struct list_head *list,

struct list_head *head)

{

if (!list_empty(list))

__list_splice(list, head, head->next);

}

/**

* list_splice_tail - join two lists, each list being a queue

* @list: the new list to add.

* @head: the place to add it in the first list.

*/

static inline void list_splice_tail(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list))

__list_splice(list, head->prev, head);

}

/**

* list_splice_init - join two lists and reinitialise the emptied list.

* @list: the new list to add.

* @head: the place to add it in the first list.

*

* The list at @list is reinitialised

*/

static inline void list_splice_init(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list)) {

__list_splice(list, head, head->next);

INIT_LIST_HEAD(list);

}

}

/**

* list_splice_tail_init - join two lists and reinitialise the emptied list

* @list: the new list to add.

* @head: the place to add it in the first list.

*

* Each of the lists is a queue.

* The list at @list is reinitialised

*/

static inline void list_splice_tail_init(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list)) {

__list_splice(list, head->prev, head);

INIT_LIST_HEAD(list);

}

}

/**

* list_entry - get the struct for this entry

* @ptr: the &struct list_head pointer.

* @type: the type of the struct this is embedded in.

* @member: the name of the list_struct within the struct.

*/

#define list_entry(ptr, type, member) \

container_of(ptr, type, member)

/**

* list_first_entry - get the first element from a list

* @ptr: the list head to take the element from.

* @type: the type of the struct this is embedded in.

* @member: the name of the list_struct within the struct.

*

* Note, that list is expected to be not empty.

*/

#define list_first_entry(ptr, type, member) \

list_entry((ptr)->next, type, member)

/**

* list_for_each -

iterate over a list

* @pos: the &struct list_head to use as a loop cursor.

* @head: the head for your list.

*/

#define list_for_each(pos, head) \

for (pos = (head)->next; prefetch(pos->next), pos != (head); \

pos = pos->next)

/**

* __list_for_each -

iterate over a list

* @pos: the &struct list_head to use as a loop cursor.

* @head: the head for your list.

*

* This variant differs from list_for_each() in that it's the

* simplest possible list iteration code, no prefetching is done.

* Use this for code that knows the list to be very short (empty

* or 1 entry) most of the time.

*/

#define __list_for_each(pos, head) \

for (pos = (head)->next; pos != (head); pos = pos->next)

/**

* list_for_each_prev -

iterate over a list backwards

* @pos: the &struct list_head to use as a loop cursor.

* @head: the head for your list.

*/

#define list_for_each_prev(pos, head) \

for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \

pos = pos->prev)

/**

* list_for_each_safe - iterate over a list safe against removal of list entry

* @pos: the &struct list_head to use as a loop cursor.

* @n: another &struct list_head to use as temporary storage

* @head: the head for your list.

*/

#define list_for_each_safe(pos, n, head) \

for (pos = (head)->next, n = pos->next; pos != (head); \

pos = n, n = pos->next)

/**

* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry

* @pos: the &struct list_head to use as a loop cursor.

* @n: another &struct list_head to use as temporary storage

* @head: the head for your list.

*/

#define list_for_each_prev_safe(pos, n, head) \

for (pos = (head)->prev, n = pos->prev; \

prefetch(pos->prev), pos != (head); \

pos = n, n = pos->prev)

/**

* list_for_each_entry -

iterate over list of given type

* @pos: the type * to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*/

#define list_for_each_entry(pos, head, member)

\

for (pos = list_entry((head)->next, typeof(*pos), member);

\

prefetch(pos->member.next), &pos->member != (head);

\

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_reverse - iterate backwards over list of given type.

* @pos: the type * to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*/

#define list_for_each_entry_reverse(pos, head, member)

\

for (pos = list_entry((head)->prev, typeof(*pos), member);

\

prefetch(pos->member.prev), &pos->member != (head);

\

pos = list_entry(pos->member.prev, typeof(*pos), member))

/**

* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()

* @pos: the type * to use as a start point

* @head: the head of the list

* @member: the name of the list_struct within the struct.

*

* Prepares a pos entry for use as a start point in list_for_each_entry_continue().

*/

#define list_prepare_entry(pos, head, member) \

((pos) ? : list_entry(head, typeof(*pos), member))

/**

* list_for_each_entry_continue - continue iteration over list of given type

* @pos: the type * to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Continue to iterate over list of given type, continuing after

* the current position.

*/

#define list_for_each_entry_continue(pos, head, member)

\

for (pos = list_entry(pos->member.next, typeof(*pos), member);

\

prefetch(pos->member.next), &pos->member != (head);

\

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_continue_reverse - iterate backwards from the given point

* @pos: the type * to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Start to iterate over list of given type backwards, continuing after

* the current position.

*/

#define list_for_each_entry_continue_reverse(pos, head, member)

\

for (pos = list_entry(pos->member.prev, typeof(*pos), member);

\

prefetch(pos->member.prev), &pos->member != (head);

\

pos = list_entry(pos->member.prev, typeof(*pos), member))

/**

* list_for_each_entry_from - iterate over list of given type from the current point

* @pos: the type * to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Iterate over list of given type, continuing from current position.

*/

#define list_for_each_entry_from(pos, head, member)

\

for (; prefetch(pos->member.next), &pos->member != (head);

\

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry

* @pos: the type * to use as a loop cursor.

* @n: another type * to use as temporary storage

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*/

#define list_for_each_entry_safe(pos, n, head, member)

\

for (pos = list_entry((head)->next, typeof(*pos), member),

\

n = list_entry(pos->member.next, typeof(*pos), member);

\

&pos->member != (head);

\

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_continue - continue list iteration safe against removal

* @pos: the type * to use as a loop cursor.

* @n: another type * to use as temporary storage

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Iterate over list of given type, continuing after current point,

* safe against removal of list entry.

*/

#define list_for_each_entry_safe_continue(pos, n, head, member)

\

for (pos = list_entry(pos->member.next, typeof(*pos), member),

\

n = list_entry(pos->member.next, typeof(*pos), member);

\

&pos->member != (head);

\

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_from - iterate over list from current point safe against removal

* @pos: the type * to use as a loop cursor.

* @n: another type * to use as temporary storage

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Iterate over list of given type from current point, safe against

* removal of list entry.

*/

#define list_for_each_entry_safe_from(pos, n, head, member)

\

for (n = list_entry(pos->member.next, typeof(*pos), member);

\

&pos->member != (head);

\

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal

* @pos: the type * to use as a loop cursor.

* @n: another type * to use as temporary storage

* @head: the head for your list.

* @member: the name of the list_struct within the struct.

*

* Iterate backwards over list of given type, safe against removal

* of list entry.

*/

#define list_for_each_entry_safe_reverse(pos, n, head, member)

\

for (pos = list_entry((head)->prev, typeof(*pos), member),

\

n = list_entry(pos->member.prev, typeof(*pos), member);

\

&pos->member != (head);

\

pos = n, n = list_entry(n->member.prev, typeof(*n), member))

/**

* list_safe_reset_next - reset a stale list_for_each_entry_safe loop

* @pos: the loop cursor used in the list_for_each_entry_safe loop

* @n: temporary storage used in list_for_each_entry_safe

* @member: the name of the list_struct within the struct.

*

* list_safe_reset_next is not safe to use in general if the list may be

* modified concurrently (eg. the lock is dropped in the loop body). An

* exception to this is if the cursor element (pos) is pinned in the list,

* and list_safe_reset_next is called after re-taking the lock and before

* completing the current iteration of the loop body.

*/

#define list_safe_reset_next(pos, n, member)

\

n = list_entry(pos->member.next, typeof(*pos), member)

/*

* Double linked lists with a single pointer list head.

* Mostly useful for hash tables where the two pointer list head is

* too wasteful.

* You lose the ability to access the tail in O(1).

*/

struct hlist_head {

struct hlist_node *first;

};

struct hlist_node {

struct hlist_node *next, **pprev;

};

#define HLIST_HEAD_INIT { .first = NULL }

#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }

#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)

static inline void INIT_HLIST_NODE(struct hlist_node *h)

{

h->next = NULL;

h->pprev = NULL;

}

static inline int hlist_unhashed(const struct hlist_node *h)

{

return !h->pprev;

}

static inline int hlist_empty(const struct hlist_head *h)

{

return !h->first;

}

static inline void __hlist_del(struct hlist_node *n)

{

struct hlist_node *next = n->next;

struct hlist_node **pprev = n->pprev;

*pprev = next;

if (next)

next->pprev = pprev;

}

static inline void hlist_del(struct hlist_node *n)

{

__hlist_del(n);

n->next = LIST_POISON1;

n->pprev = LIST_POISON2;

}

static inline void hlist_del_init(struct hlist_node *n)

{

if (!hlist_unhashed(n)) {

__hlist_del(n);

INIT_HLIST_NODE(n);

}

}

static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)

{

struct hlist_node *first = h->first;

n->next = first;

if (first)

first->pprev = &n->next;

h->first = n;

n->pprev = &h->first;

}

/* next must be != NULL */

static inline void hlist_add_before(struct hlist_node *n,

struct hlist_node *next)

{

n->pprev = next->pprev;

n->next = next;

next->pprev = &n->next;

*(n->pprev) = n;

}

static inline void hlist_add_after(struct hlist_node *n,

struct hlist_node *next)

{

next->next = n->next;

n->next = next;

next->pprev = &n->next;

if(next->next)

next->next->pprev = &next->next;

}

/*

* Move a list from one list head to another. Fixup the pprev

* reference of the first entry if it exists.

*/

static inline void hlist_move_list(struct hlist_head *old,

struct hlist_head *new)

{

new->first = old->first;

if (new->first)

new->first->pprev = &new->first;

old->first = NULL;

}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head) \

for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \

pos = pos->next)

#define hlist_for_each_safe(pos, n, head) \

for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \

pos = n)

/**

* hlist_for_each_entry - iterate over list of given type

* @tpos: the type * to use as a loop cursor.

* @pos: the &struct hlist_node to use as a loop cursor.

* @head: the head for your list.

* @member: the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry(tpos, pos, head, member)

\

for (pos = (head)->first;

\

pos && ({ prefetch(pos->next); 1;}) &&

\

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_continue - iterate over a hlist continuing after current point

* @tpos: the type * to use as a loop cursor.

* @pos: the &struct hlist_node to use as a loop cursor.

* @member: the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_continue(tpos, pos, member)

\

for (pos = (pos)->next;

\

pos && ({ prefetch(pos->next); 1;}) &&

\

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_from - iterate over a hlist continuing from current point

* @tpos: the type * to use as a loop cursor.

* @pos: the &struct hlist_node to use as a loop cursor.

* @member: the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_from(tpos, pos, member)

\

for (; pos && ({ prefetch(pos->next); 1;}) &&

\

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry

* @tpos: the type * to use as a loop cursor.

* @pos: the &struct hlist_node to use as a loop cursor.

* @n: another &struct hlist_node to use as temporary storage

* @head: the head for your list.

* @member: the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_safe(tpos, pos, n, head, member)

\

for (pos = (head)->first;

\

pos && ({ n = pos->next; 1; }) &&

\

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = n)

#endif

Copyright © Linux教程網 All Rights Reserved