歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
Linux教程網 >> Linux編程 >> Linux編程 >> Java 線程通信

Java 線程通信

日期:2017/3/1 9:17:43   编辑:Linux編程

線程通信用來保證線程協調運行,一般在做線程同步的時候才需要考慮線程通信的問題。

1、傳統的線程通信

通常利用Objeclt類提供的三個方法:

wait() 導致當前線程等待,並釋放該同步監視器的鎖定,直到其它線程調用該同步監視器的notify()或者notifyAll()方法喚醒線程。

notify(),喚醒在此同步監視器上等待的線程,如果有多個會任意選擇一個喚醒

notifyAll() 喚醒在此同步監視器上等待的所有線程,這些線程通過調度競爭資源後,某個線程獲取此同步監視器的鎖,然後得以運行。

這三個方法必須由同步監視器對象調用,分為兩張情況:

同步方法時,由於同步監視器為this對象,所以可以直接調用這三個方法。

示例如下:

public class SyncMethodThreadCommunication {
static class DataWrap{
int data = 0;
boolean flag = false;

public synchronized void addThreadA(){
if (flag) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

data++;
System.out.println(Thread.currentThread().getName() + " " + data);
flag = true;
notify();
}

public synchronized void addThreadB() {
if (!flag) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

data++;
System.out.println(Thread.currentThread().getName() + " " + data);
flag = false;
notify();
}
}

static class ThreadA extends Thread {
private DataWrap data;

public ThreadA(DataWrap dataWrap) {
this.data = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
data.addThreadA();
}
}
}

static class ThreadB extends Thread {
private DataWrap data;

public ThreadB(DataWrap dataWrap) {
this.data = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
data.addThreadB();
}
}
}

public static void main(String[] args) {
//實現兩個線程輪流對數據進行加一操作
DataWrap dataWrap = new DataWrap();

new ThreadA(dataWrap).start();
new ThreadB(dataWrap).start();
}

}

同步代碼塊時,需要使用監視器對象調用這三個方法。

示例如下:

public class SyncBlockThreadComminication {
static class DataWrap{
boolean flag;
int data;
}

static class ThreadA extends Thread{
DataWrap dataWrap;

public ThreadA(DataWrap dataWrap){
this.dataWrap = dataWrap;
}

@Override
public void run() {
for(int i = 0 ; i < 10; i++) {
synchronized (dataWrap) {
if (dataWrap.flag) {
try {
dataWrap.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

dataWrap.data++;
System.out.println(getName() + " " + dataWrap.data);
dataWrap.flag = true;
dataWrap.notify();
}
}
}
}

static class ThreadB extends Thread{
DataWrap dataWrap;

public ThreadB(DataWrap dataWrap){
this.dataWrap = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
synchronized (dataWrap) {
if (!dataWrap.flag) {
try {
dataWrap.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

dataWrap.data++;
System.out.println(getName() + " " + dataWrap.data);
dataWrap.flag = false;
dataWrap.notify();
}
}
}

}
public static void main(String[] args) {
//實現兩個線程輪流對數據進行加一操作

DataWrap dataWrap = new DataWrap();
new ThreadA(dataWrap).start();
new ThreadB(dataWrap).start();
}

}

2、使用Condition控制線程通信

當使用Lock對象保證同步時,則使用Condition對象來保證協調。

示例如下:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import com.sun.media.sound.RIFFInvalidDataException;

import javafx.scene.chart.PieChart.Data;

public class SyncLockThreadCommunication {
static class DataWrap {
int data;
boolean flag;

private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();

public void addThreadA() {
lock.lock();
try {
if (flag) {
try {
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

data++;
System.out.println(Thread.currentThread().getName() + " " + data);
flag = true;
condition.signal();
} finally {
lock.unlock();
}
}

public void addThreadB() {
lock.lock();
try {
if (!flag) {
try {
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

data++;
System.out.println(Thread.currentThread().getName() + " " + data);
flag = false;
condition.signal();
} finally {
lock.unlock();
}
}
}

static class ThreadA extends Thread{
DataWrap dataWrap;

public ThreadA(DataWrap dataWrap) {
this.dataWrap = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
dataWrap.addThreadA();
}
}
}

static class ThreadB extends Thread{
DataWrap dataWrap;

public ThreadB(DataWrap dataWrap) {
this.dataWrap = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
dataWrap.addThreadB();
}
}
}

public static void main(String[] args) {
//實現兩個線程輪流對數據進行加一操作

DataWrap dataWrap = new DataWrap();
new ThreadA(dataWrap).start();
new ThreadB(dataWrap).start();
}

}

其中Condition對象的await(), singal(),singalAll()分別對應wait(),notify()和notifyAll()方法。

3、使用阻塞隊列BlockingQueue控制線程通信

BlockingQueue是Queue接口的子接口,主要用來做線程通信使用,它具有一個特征:當生產者線程試圖向BlockingQueue中放入元素時,如果隊列已滿,則該線程被阻塞;當消費者線程試圖從BlockingQueue中取出元素時,如果隊列已空,則該線程被阻塞。這兩個特征分別對應兩個支持阻塞的方法,put(E e)和take()

示例如下:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class BlockingQueueThreadComminication {
static class DataWrap{
int data;
}

static class ThreadA extends Thread{
private BlockingQueue<DataWrap> blockingQueue;

public ThreadA(BlockingQueue<DataWrap> blockingQueue, String name) {
super(name);
this.blockingQueue = blockingQueue;
}

@Override
public void run() {
for (int i = 0; i < 100; i++) {
try {
DataWrap dataWrap = blockingQueue.take();

dataWrap.data++;
System.out.println(getName() + " " + dataWrap.data);
sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

static class ThreadB extends Thread{
private BlockingQueue<DataWrap> blockingQueue;
private DataWrap dataWrap;

public ThreadB(BlockingQueue<DataWrap> blockingQueue, DataWrap dataWrap, String name) {
super(name);
this.blockingQueue = blockingQueue;
this.dataWrap = dataWrap;
}

@Override
public void run() {
for (int i = 0; i < 100; i++) {
try {
dataWrap.data++;
System.out.println(getName() + " " + dataWrap.data);
blockingQueue.put(dataWrap);
sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

public static void main(String[] args) {
///實現兩個線程輪流對數據進行加一操作

DataWrap dataWrap = new DataWrap();
BlockingQueue<DataWrap> blockingQueue = new ArrayBlockingQueue<>(1);

new ThreadA(blockingQueue, "Consumer").start();
new ThreadB(blockingQueue, dataWrap, "Producer").start();
}

}

BlockingQueue共有五個實現類:

ArrayBlockingQueue 基於數組實現的BlockingQueue隊列

LinkedBlockingQueue 基於鏈表實現的BlockingQueue隊列

PriorityBlockingQueue 中元素需實現Comparable接口,其中元素的排序是按照Comparator進行的定制排序。

SynchronousQueue 同步隊列,要求對該隊列的存取操作必須是交替進行。

DelayQueue 集合元素必須實現Delay接口,隊列中元素排序按照Delay接口方法getDelay()的返回值進行排序。

Copyright © Linux教程網 All Rights Reserved